461 research outputs found

    Shapes of Semiflexible Polymer Rings

    Get PDF
    The shape of semiflexible polymer rings is studied over their whole range of flexibility. Investigating the joint distribution of asphericity and nature of asphericity as well as their respective averages we find two distinct shape regimes depending on the flexibility of the polymer. For small perimeter to persistence length the fluctuating rings exhibit only planar, elliptical configurations. At higher flexibilities three dimensional, crumpled structures arise. Analytic calculations for tight polymer rings confirm an elliptical shape in the stiff regime.Comment: 4 pages, 3 figures, Version as published in Phys. Rev. Let

    Buckling of stiff polymer rings in weak spherical confinement

    Get PDF
    Confinement is a versatile and well-established tool to study the properties of polymers either to understand biological processes or to develop new nanobiomaterials. We investigate the conformations of a semiflexible polymer ring in weak spherical confinement imposed by an impenetrable shell. We develop an analytic argument for the dominating polymer trajectory depending on polymer flexibility considering elastic and entropic contributions. Monte Carlo simulations are performed to assess polymer ring conformations in probability densities and by the shape measures asphericity and nature of asphericity. Comparison of the analytic argument with the mean asphericity and the mean nature of asphericity confirm our reasoning to explain polymer ring conformations in the stiff regime, where elastic response prevails

    Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia

    Get PDF
    The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a  ∼  250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ∼  3–6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a) aquatic microorganisms are acclimating to a downstream shift in DOM composition and/or (b) photodegradation is continually generating labile DOM for continued microbial processing of DOM along the flow-path continuum. Without such processes, we would otherwise expect to see a declining fraction of bioavailable DOC downstream with increasing residence time of water in the system. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the northeast Siberian region will become more hydrologically active, providing greater amounts of DOM to fluvial networks and ultimately to the Arctic Ocean. The ability to rapidly and comprehensively monitor shifts in the quantity and quality of DOM across the landscape is therefore critical for understanding potential future feedbacks within the Arctic carbon cycle

    Development and use of a Restorative Justice Ideology Instrument: Assessing beliefs

    Get PDF
    Researchers have noted that restorative justice (RJ) practices in schools seem to improve targeted outcomes (e.g. decreased office visits, increased grades, etc.). It has been acknowledged that a ‘grassroots’ (beliefs level) buy-in from teachers is necessary for the creation of a school environment that is in line with the ideals of RJ. In the current study, an operational definition for restorative justice ideology (RJI) was developed and used as the basis for the creation of a RJI measurement instrument. This is intended to facilitate understandings of the influence that RJ training has on individuals at the beliefs level, and whether the degree to which an individual holds an RJI is associated with the degree to which RJ practices are carried out at the classroom and school level. An exploratory factor analysis was conducted, a three-factor model was selected, and the instrument was tested for reliability and validity. The RJI was then used to investigate whether other individual differences were related to the RJI of teachers. The outcome of this study was the development of a psychometrically sound RJI instrument. Perspective taking, empathic concern, pupil control ideology, personal distress, and self-efficacy were identified as important characteristics of RJI

    Antarctic surface melting dynamics : enhanced perspectives from radar scatterometer data

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): F02023, doi:10.1029/2011JF002126.Antarctic ice sheet surface melting can regionally influence ice shelf stability, mass balance, and glacier dynamics, in addition to modulating near-surface physical and chemical properties over wide areas. Here, we investigate variability in surface melting from 1999 to 2009 using radar backscatter time series from the SeaWinds scatterometer aboard the QuikSCAT satellite. These daily, continent-wide observations are explored in concert with in situ meteorological records to validate a threshold-based melt detection method. Radar backscatter decreases during melting are significantly correlated with in situ positive degree-days as well as meltwater production determined from energy balance modeling at Neumayer Station, East Antarctica. These results support the use of scatterometer data as a diagnostic indicator of melt intensity (i.e., the relative liquid water production during melting). Greater spatial and temporal melting detected relative to previous passive microwave-based studies is attributed to a higher sensitivity of the scatterometer instrument. Continental melt intensity variability can be explained in part by the dynamics of the Southern Annular Mode and the Southern Oscillation Index, and extreme melting events across the Ross Ice Shelf region may be associated with El Niño conditions. Furthermore, we find that the Antarctic Peninsula accounts for only 20% of Antarctic melt extent but greater than 50% of the total Antarctic melt intensity. Over most areas, annual melt duration and intensity are proportional. However, regional and localized distinctions exist where the melt intensity metric provides greater insight into melting dynamics than previously obtainable with other remote sensing techniques.Support for this research was provided by NASA grant NNX10AP09G and NSF grant ANT-063203.2012-11-1

    Arctic in Rapid Transition (ART) : science plan

    Get PDF
    The Arctic is undergoing rapid transformations that have brought the Arctic Ocean to the top of international political agendas. Predicting future conditions of the Arctic Ocean system requires scientific knowledge of its present status as well as a process-based understanding of the mechanisms of change. The Arctic in Rapid Transition (ART) initiative is an integrative, international, interdisciplinary pan-Arctic program to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity. The goal of ART is to develop priorities for Arctic marine science over the next decade. Three overarching questions form the basis of the ART science plan: (1) How were past transitions in sea ice connected to energy flows, elemental cycling, biological diversity and productivity, and how do these compare to present and projected shifts? (2) How will biogeochemical cycling respond to transitions in terrestrial, gateway and shelf-to-basin fluxes? (3) How do Arctic Ocean organisms and ecosystems respond to environmental transitions including temperature, stratification, ice conditions, and pH? The integrated approach developed to answer the ART key scientific questions comprises: (a) process studies and observations to reveal mechanisms, (b) the establishment of links to existing monitoring programs, (c) the evaluation of geological records to extend time-series, and (d) the improvement of our modeling capabilities of climate-induced transitions. In order to develop an implementation plan for the ART initiative, an international and interdisciplinary workshop is currently planned to take place in Winnipeg, Canada in October 2010

    Application and Evaluation of a Snowmelt Runoff Model in the Tamor River Basin, Eastern Himalaya Using a Markov Chain Monte Carlo (MCMC) Data Assimilation Approach

    Get PDF
    Previous studies have drawn attention to substantial hydrological changes taking place in mountainous watersheds where hydrology is dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study utilizes a Markov Chain Monte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree-day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated using daily streamflow from 2002 to 2006 with fairly high accuracy (average Nash-Sutcliffe metric approx. 0.84, annual volume bias <3%). The Markov Chain Monte Carlo approach constrains the parameters to which the model is most sensitive (e.g. lapse rate and recession coefficient) and maximizes model fit and performance. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall compared with simulations using observed station precipitation. The average snowmelt contribution to total runoff in the Tamor River basin for the 2002-2006 period is estimated to be 29.7+/-2.9% (which includes 4.2+/-0.9% from snowfall that promptly melts), whereas 70.3+/-2.6% is attributed to contributions from rainfall. On average, the elevation zone in the 4000-5500m range contributes the most to basin runoff, averaging 56.9+/-3.6% of all snowmelt input and 28.9+/-1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow but that this derives from the degree-day melting model. Lastly, we demonstrate that the data assimilation approach is useful for quantifying and reducing uncertainty related to model parameters and thus provides uncertainty bounds on snowmelt and rainfall contributions in such mountainous watersheds

    Reproducibility of the heat/capsaicin skin sensitization model in healthy volunteers

    Get PDF
    INTRODUCTION: Heat/capsaicin skin sensitization is a well-characterized human experimental model to induce hyperalgesia and allodynia. Using this model, gabapentin, among other drugs, was shown to significantly reduce cutaneous hyperalgesia compared to placebo. Since the larger thermal probes used in the original studies to produce heat sensitization are now commercially unavailable, we decided to assess whether previous findings could be replicated with a currently available smaller probe (heated area 9 cm(2) versus 12.5–15.7 cm(2)). STUDY DESIGN AND METHODS: After Institutional Review Board approval, 15 adult healthy volunteers participated in two study sessions, scheduled 1 week apart (Part A). In both sessions, subjects were exposed to the heat/capsaicin cutaneous sensitization model. Areas of hypersensitivity to brush stroke and von Frey (VF) filament stimulation were measured at baseline and after rekindling of skin sensitization. Another group of 15 volunteers was exposed to an identical schedule and set of sensitization procedures, but, in each session, received either gabapentin or placebo (Part B). RESULTS: Unlike previous reports, a similar reduction of areas of hyperalgesia was observed in all groups/sessions. Fading of areas of hyperalgesia over time was observed in Part A. In Part B, there was no difference in area reduction after gabapentin compared to placebo. CONCLUSION: When using smaller thermal probes than originally proposed, modifications of other parameters of sensitization and/or rekindling process may be needed to allow the heat/capsaicin sensitization protocol to be used as initially intended. Standardization and validation of experimental pain models is critical to the advancement of translational pain research

    A pan-Arctic Network integrating past, present and future

    Get PDF
    Arctic in Rapid Transition Implementation Workshop; Winnipeg, Manitoba, Canada, 18–20 October 2010; Rapid transitions in Arctic sea ice and the associated global integrated Earth system impacts and socioeconomic consequences have brought the Arctic Ocean to the top of national and international geophysical and political agendas. Alarmingly, there is a persistent mismatch between observed and predicted patterns, which speaks to the complexity of planning adaptation and mitigation activities in the Arctic. Predicting future conditions of Arctic marine ecosystems for climate change requires interdisciplinary and pan-Arctic characterization and understanding of past and present trends. The Arctic in Rapid Transition (ART) initiative is an integrative, international, interdisciplinary, pan-Arctic network to study spatial and temporal changes in sea ice cover and ocean circulation over broad time scales to better understand and forecast the impact of these changes on Arctic marine ecosystems and biogeochemistry. The ART initiative began in October 2008 and is still led by early-career scientists. The ART science plan, developed after the ART initiation workshop in November 2009, was endorsed by the Arctic Ocean Sciences Board, which is now the Marine Working Group of the International Arctic Science Committee
    • …
    corecore